
  pg. 1

 

 

Wild Mushrooms Classification – Edible or Poisonous 

 

 

 

Yulin Shen 

ECE 539 Project Report 

Professor: Hu Yu Hen 

2013 Fall 

 

( I allow code to be released in the public domain) 

 

 



  pg. 2

Contents 

 

Introduction …………………………………………………………. 3 

  Practicality of the project ……………………………………………. 3 

  Aim of the project……………………………………………………. 3 

Work Performed …………………………...…………………………. 3 

  Data analysis…………………………………………………………. 4 

  K-NN………………………………………...………………………. 4 

  Naïve Bayer …………………………………….……………………. 5 

Results……………………………………………………...…………. 6 

Discussion………………………………………………..……………. 7 

References…………………………………………………….………. 11 

 

 



  pg. 3

Introduction 

Practicality of the project 

Mushrooms, as a kind of food, are very special due to their edibility. Some countries treat 

mushrooms as a kind of high nutrition food. However, only small portions of them are edible. It 

is really dangerous to eat a poisonous mushroom. Thus, I want to use some classification 

algorithms to develop a best model to predict whether new emerging mushrooms are edible 

based on the detected data of the mushrooms. Furthermore, it is an opportunity to compare the 

classifiers and also understand how they operate.  

Aim of the project 

The project uses the data from UCI Machine Learning Repository. I intend to implement 2 

classification algorithms to build models for prediction. In the process, the project aim to 

increase the accuracies of them. And also, I intend to compare the 2 classifiers to know their 

advantages and disadvantages. 

 

Work Performed 

Data analysis 

The original dataset is recorded with alphabetic characters. Although each alphabetic character is 

also represented as an integer, the range of each feature is not in an integral scale.  
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First, I calculate a lowest common multiple number from each number of different kinds in 

features. Then, I use this number to be the range of them, and convert each alphabetic character 

to a reasonable integer. Now, it can help the K-NN to get better order of the distances.  

Contrast to the K-NN, Naïve Bayer does not need the dataset to be recorded in numerical 

character. Thus, I just keep the original dataset to do implementation.  

The dataset contains about 8000 combinations. Although the number of data is enough, we still 

need to divide them to get the training samples and testing samples. In this case, I implement 4-

way cross validation to get 4 pairs of training dataset and testing dataset. The size ratio of them is 

3:1.  

K-NN 

After getting 4 pairs of training dataset and testing dataset, I need to calculate distances between 

each point in training dataset and each point in testing dataset. Because each feature’s 

importance is same, I choose way of Euclidean distance to do calculations without weights. After 

storing them in a matrix, I sort them in ascending order. Now, I can start to consider how to 

determine the final result. As we know, the first element in the array should take the biggest 

weight. Hence, I try to set the weights for each of elements in the matrix. Because the feature 

size is 22, the number of feature difference is 22 at most. Now, I can implement an exhaustive 

way from 1 to 22 to find which K is best in the model. Finally, I can compare the predicted 

results with the true results to get the classification rates.   
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Naïve Bayer 

The algorithm just needs the original dataset, because it is to calculate the possibility of each 

feature. In another sentence, it counts the number of features instead of calculating. For example, 

in the first feature column, I need to count the number of ‘b’, and it when the mushroom is edible. 

Later, I need to calculate the 2 possibilities that ‘b’ emerging and mushroom is edible and also 

poisonous. After getting all 2 possibilities of features, I need to multiply them to do comparison. 

The result of comparison can determine whether the mushroom is edible or poisonous. Now, I 

can calculate the classification rate as above. 

 

 

 

Results 

K-NN: 
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Classification rate1: 0.9764 Classification rate2: 0.8966 

Classification rate3: 1          Classification rate4: 0.8631 

 

Naïve Bayer: 

Classification rate1: 0.9764 Classification rate2: 0.8966 

Classification rate3: 1          Classification rate4: 0.8631 
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Discussion 

I tried to use the original dataset to implement the K-NN. The accuracy is obviously lower than 

the dataset converted in an integral scale. In order to increase prediction accuracy, the way to 

dealt with data is also important. They should be in the same range. It can help classifiers to get 

better results.  

The crucial procedures in the K-NN are how to calculate the distances and how to determine the 

results. Maybe in other cases, some features are more important than other ones. In this time, the 

algorithm can give more weight in this feature. It can help to improve the order of distances. And 

also, the algorithm can give weights in the process of determining results. The first distance is 

the smallest one, so it is the closest point to the testing data. The result should be most 

convincing. Actually, it is like the linear regression. However, at this case, I do not think 

implement regression in the last procedure is a good idea. Because if I implement that, I may 

have 4 different models of regression because of 4 pairs of datasets, now it is possible to 

determine which one is better. We do not know the true testing sample for future prediction and 

also the true training dataset should include both testing samples and training sample in the 

project. Hence, it is useless to implement the regression. However, to find some reasonable 

weights for them is still a good choice. 

We can see that the sample 3 have the highest classification rate, and the sample 1 is also good in 

prediction. However, the sample 2 and 4 are not very well. Because I parse the dataset into 4 

separate sets. Maybe in some sets, the data is not in an average manner. For example, the set 3 

may have a lot of poisonous mushrooms or the feature 1 in this set is almost ‘x’. In this case, it is 
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hard to find the similar point in this algorithm. However, the true training set is comprehensive. I 

think the model can perform higher accuracy if it is implemented in a realistic case. 

In the project, I implement an exhaustive way to detect which K is better for prediction. We can 

see that K =1, 2, or 3 is better in the sample 1, 2, and 4. However, the sample 2 is very stable due 

to dataset in a good condition.  
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The classification rates of Naïve Bayer are all about 90%. Although I implement the same 

procedures as a reference, the classification rates are a little lower than those in the reference. 

This algorithm is mainly based on the probability. I think the result is not very good due to the 

same reason as K-NN, which is caused by the separate datasets. However, if I ignore this bad 

effect, the performance of the algorithm is worse than the K-NN in this problem. In my opinion, 

the problem has more than 20 features, if the algorithm is only to compare the multiple result of 

each possibility, the big deviation may be produced. I think in the last procedure, it is better to 

implement some other models to limit the deviation for prediction. 

In the process, I calculate all probabilities for all features. We can see that some probabilities are 

very high, which means that if this feature emerge, the mushroom is likely to be edible. It is a 

hint to tell us which features can influence the result more. Hence, we may add weights to them. 
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