فروش پروژه تشخیص چهره از تصاویر و تطبیق با رویکرد یادگیری عمیق و نگاشت های خودسازمانده آشوب ناک با نرم افزار MATLAB

کد پروژه: 2987

عنوان پروژه: فروش پروژه تشخیص چهره از تصاویر و تطبیق با رویکرد یادگیری عمیق و نگاشت های خودسازمانده آشوب ناک با نرم افزار MATLAB

قالب بندی: m- داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 50.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه تشخیص چهره از تصاویر و تطبیق با رویکرد یادگیری عمیق و نگاشت های خودسازمانده آشوب ناک با نرم افزار MATLAB

با توجه به این که سیستم های تشخیص هوشمند امروزه به عنوان یک مسئله مهم در بخش های گوناگون به خصوص امنیت، سیستم های تجاری، اداری، اقتصادی، نظامی، عمومی و غیره، به کار گرفته می شوند و دامنه وسیعی را پوشش می دهند، لذا ارائه راهکارهای جدید با رفع چالش های قبلی، یک مسئله مهم و حیاتی تلقی می شود. یکی از این سیستم های تشخیص هوشمند، سیستم شناسایی چهره از روی تصاویر یا ویدئوها می باشد که کاربر آن از سرگرمی های عامیانه در گوشی های همراه تا سیستم های فوق امنیتی، کاربرد خود را نشان می دهد. سیستم های شناسایی چهره به عنوان یک سیستم بیومتریک برشمرده می شوند، زیرا با خاصیت ها و ویژگی های چهره در ارتباط مستقیم هستند. همین طور این سیستم ها مبتنی بر اصول پردازش تصویر، بینایی ماشین و بعضا یادگیری ماشین هستند. می بایست یک مرز و تعریف مشخص از سیستم شناسایی چهره نیز ارائه کرد که این تحقیق به دنبال آن است. در واقع شناسایی چهره با تشخیص چهره متفاوت است. در شناسایی چهره، وجود یک یا چند چهره در تصویر یا ویدئو مورد نظر است و همین طور شناسایی دقیق ناحیه چهره، اما در سیستم های تشخیص چهره، بعد از شناسایی چهره، تطبیق چهره با سایر تصاویر از یک مجموعه داده انجام می شود. سیستم های شناسایی چهره که به عنوان حوزه کاری این تحقیق نیز به شمار می روند، دارای چالش های فراوانی می باشند. از جمله این چالش ها می توان به وجود چندین شخص در یک تصویر یا ویدئو اشاره نمود. هدف این است که تمامی تصاویر شناخته و شناسایی گردند. همین طور وجود پشت زمینه یا پس زمینه با ترکیب های مختلف رنگی و یا وجود اشیا، الگویی پیچیده در تصویر ایجاد می نماید که یک چالش جدید در شناسایی چهره را ایجاد می کند. در نظر گرفتن ناحیه چهره افراد و شناسایی آن ها، نیاز به یک سری ویژگی ها دارد که بر اساس سیستم های پردازش تصویر، حاصل می گردند. برای این منظور عملیات تقطیع تصویر، امری لازم است تا ویژگی ها، خود را بیشتر نمایش بدهند. در واقع با تقطیع تصویر، می توان یک تصویر را به ویژگی ها و اجزای تشکیل دهنده آن، تقسیم بندی نمود. از جمله این مولفه های لازم و ضروری در سیستم های شناسایی تصویر در فاز تقطیع، شدت روشنایی و لبه ها هستند. شناسایی ویژگی های اصلی برای شناسایی دقیق ناحیه چهره، نیازمند شناسایی یک سری ویژگی ها مانند ناحیه صورت، چشم، بینی، لب، گونه ها، گوش، ابرو، داشتن سبیل یا ریش، داشتن موهای بلند یا تاس بودن، پیشانی و نواحی دیگر چهره است. همین طور یک سری چالش های دیگر از جمله پوشیده بودن صورت و یا داشتن عینک بر روی چشم، کار شناسایی چهره را کمی دشوارتر می کند. وجود دوربین در زوایای مخلف و عکس برداری، یک مسئله پُرچالش دیگر در سیستم های شناسایی چهره به شمار می رود. اکثر روش های شناسایی چهره، دارای دقت نسبتا نامناسب در شناسایی ناحیه چهره هستند که منجر می شوند در مراحل بعدی مانند تشخیص و تطبیق تصویر و یا سیستم های تشخیص احساسات از تصویر، اشتباهاتی رخ بدهد. همین طور پیچیدگی محاسباتی بالا، می تواند زمان اجرا و کارایی این سیستم ها را تحت تاثیر قرار بدهد. رویکردی که این تحقیق ارائه می دهد، سعی در برطرف سازی مشکلات و چالش های نام برده را دارد. این رویکرد که به صورت سه گام انجام می شود، شامل مرحله پیش پردازش، تقطیع و استخراج ویژگی به همراه شناسایی ناحیه چهره است. در فاز پیش پردازش، کاهش نویز با فیلتر میانه انجام می شود و سپس متعادل سازی هیستوگرام برای بهسازی تصویر صورت می پذیرد. سپس جهت شناسایی ویژگی ها از تقطیع مبتنی بر الگوریتم شبکه عصبی نگاشت خودسازمانده به صورت آشوب ناک استفاده می شود. در فاز تقطیع تصویر، ویژگی ها مشخص می شوند و در این مرحله از مولفه های شدت روشنایی و لبه در تصویر استفاده می گردد. سپس نیاز به آموزش ویژگی هایی است که نمایان شده اند که با استفاده از عملیات یادگیری ماشین مبتنی بر یادگیری عمیق انجام می شود. مدل فرکتال برای مشخص کردن ناحیه چهره به صورت دقیق بعد از تقطیع با هدف استخراج ویژگی ها و سپس آموزش برای شناسایی دقیق چهره در تصویر با شبکه عصبی کانولوشن انجام می گیرد. رویکرد پیشنهادی بر روی مجموعه داده های مختلف شامل LFW، JAFFE، UCCSFace و BioID، مورد سنجش واقع شده است که در هر کدام از این مجموعه داده ها، با مقایسه با روش های پیشین در شرایط یکسان، بهبود نسبی را نشان می دهد.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

عکس 5

 

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه ریزپهنه بندی آسیب پذیری شهرهای اطراف کرمانشاه با نرم افزار MATLAB

کد پروژه: 2986

عنوان پروژه: فروش پروژه ریزپهنه بندی آسیب پذیری شهرهای اطراف کرمانشاه با نرم افزار MATLAB

قالب بندی: m- داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 50.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه ریزپهنه بندی آسیب پذیری شهرهای اطراف کرمانشاه با نرم افزار MATLAB

زمین لرزه به عنوان یک بلای طبیعی، اثرات مخرب بسیاری دارد. در تمام این تحقیق، به بررسی زمین لرزه در ابعاد و زوایایی مختلف در کشور ایران پرداخته شد و اثرات خرابی آن ها بر بخش های مختلف، مورد بررسی واقع گردید. سپس سعی در استفاده از یک مجموعه داده واقعی برای بررسی پهنه بندی آسیب پذیری شد که در شهر کرمانشاه در اثر زمین لرزه، حاصل گردید. اثرات حوزه نزدیک و دور بر طیف خطر در چند قالب مورد بررسی قرار گرفت که مهمترین آن، امتداد گسل ها بود. شبیه سازی در محیط MATLAB و Excel به صورت ترکیبی برای تحلیل احتمالی و آماری انجام شد. در ابتدا به رسم نمودارهای فراوانی به بزرگی زمین لرزه، نمودار فراوانی پراکنش های زمین لرزه و نمودار فراوانی عمق پراکنش زمینه لرزه ها از داده های موجود و ثبت شده کرمانشاه در بازه زمانی 1917 الی 2018 میلادی پرداخته شد. سپس تحلیل احتمالی با کدنویسی در محیط MATLAB انجام گرفت که در ابتدا احتمال رویداد زمین لرزه مورد بررسی قرار گرفت که نشان می داد می توان نرخ آسیب پذیری و زمین لرزه را در یک منطقه مشخص مانند کرمانشاه تا حدی تخمین زد. سپس تحلیل دینامیکی زمین لرزه با روش میرایی ویسکوز انجام گرفت که نشان می داد شتاب زلزله ها در ابعاد زمین لرزه به بزرگی 5 ریشتر در شهر کرمانشاه بر اساس داده های موجود رخ می دهد. طیف خطر یکنواخت برای امتداد پذیری گسل های شهر کرمانشاه با زاوایا و گام های مختلف در دو مرحله گوناگون نمایش و سپس به نمایش محدوده انتهایی طیف خطر یکنواخت پرداخته شد. نمایش تناوب پالس بر حسب بزرگی، نمایش بیشترین حد جابجایی بر مقاومت، تحلیل اثر جنس خاک و استفاده از تکنیک SIMQKE برای ریزپهنه بندی آسیب پذیری در زمین لرزه در شهر کرمانشاه نیز در ادامه صورت گرفت که حاکی از توانمندی رویکرد پیشنهادی در نمایش ریزپهنه بندی آسیب پذیری در شهر کرمانشاه در برابر زمین لرزه را نشان می دهد.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

 

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه کنترل تطبیقی برج تقطیر صنعتی با استفاده از یادگیری عمیق با نرم افزار MATLAB

کد پروژه: 2985

عنوان پروژه: فروش پروژه کنترل تطبیقی برج تقطیر صنعتی با استفاده از یادگیری عمیق با نرم افزار MATLAB

قالب بندی: m- داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 80.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه کنترل تطبیقی برج تقطیر صنعتی با استفاده از یادگیری عمیق با نرم افزار MATLAB

امروزه صنعتی نفت به عنوان یکی از مهمترین عناصر در هر کشوری به شمار می رود. وجود سیستم های برج تقطیر، یکی از ضرورت های هر پالایشگاهی به شمار می رود. شناسایی پارامترهای مهمی که با بهبود آن ها می توان کارایی برج تقطیر را تا اندازه ای سامان داد، یک ضرورت به شمار می رود، زیرا نتایج هر بخش از فرایندهای آن، به بخش بعدی، تاثیر می گذارد. یکی از مهمترین این بخش ها، مصرف انرژی، پایداری در برابر نویز و کارایی در برابر اغتشاشات می باشد. استفاده از کنترل کننده ها می تواند نیلی به این اهداف را ارائه دهد. اما استفاده از کنترل کننده ای که مقاوم در برابر خطاها باشد، امری ضروری است تا به فرایندهای آتی، تاثیر منفی نداشته باشد. این تحقیق به استفاده از کنترل کننده مبتنی بر شبکه عصبی عمیق به عنوان ساختاری تخمین زن به همراه یک روش آماری جهت بهبود مصرف انرژی، پایداری در برابر نویز و کارایی در برابر اغتشاشات می پردازد. شبیه سازی در محیط MATLAB انجام می پذیرد و انتظار می رود که بهینه سازی در سه هدف نام برده، به بهترین شکل ممکن، صورت پذیرد.

 

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه افزایش نرخ تشخیص و پیشگیری از جرائم فیشینگ در بانکداری اینترنتی با C4.5 با نرم افزار R

کد پروژه: 2984

عنوان پروژه: فروش پروژه افزایش نرخ تشخیص و پیشگیری از جرائم فیشینگ در بانکداری اینترنتی با C4.5 با نرم افزار R

قالب بندی: R – داکیومنت کامل

دسته: کامپیوتر – R

قیمت: 100.000 تومان

قابلیت اجرا در نرم افزار: R

شرح مختصر:

فروش پروژه افزایش نرخ تشخیص و پیشگیری از جرائم فیشینگ در بانکداری اینترنتی با C4.5 با نرم افزار R

در این تحقیق الگوریتم های مختلف داده کاوی بررسی و بر روی دیتاست داده های مربوط به فیشینگ که در چند مرحله فرآیند پیش پردازش و تجزیه تحلیل بر روی آن انجام شده است، اعمال می­شود و خروجی الگوریتم های مختلف با پارامترهای خروجی متنوع همچون میزان دقت و صحت و همچنین عدد کاپا تجزیه و تحلیل شده است. در این تحقیق، انوع مختلف مشخصه های فیشینگ و پنج الگوریتم برای طبقه بندی و پیش بینی وب سایت های فیشینگ ارائه شده است و نتایج آن ها با هم مقایسه شده اند. فرآیند نرمال سازی و انتخاب مجموعه داده های موثر بر طبقه بندی پیش از اجرای الگوریتم های داده کاوی برای اجرای درست طبقه بندی و پیش بینی وب سایت های فیشینگ مورد استفاده قرار گرفته اند.

الگوریتم C4.5 توسط Quinlan در سال 1993 پیشنهاد شده است. این یک الگوریتم استتنتاجی درخت تصمیم گیری و یک جانشین از الگوریتم ID3 (Iterative Dichotomiser 3) است. الگوریتم استتنتاجی الگوریتم درخت تصمیم گیری تحت دسته بندی الگوریتم طبقه بندی (classification) قرار می گیرد. در الگوریتم طبقه بندی دو مرحله وجود دارد. اولین مرحله یادگیری است که در آن مدل طبقه بندی ساخته می شود. مرحله دوم مرحله ای است که در آن مدل برای پیش بینی برچسب های کلاس با داده های داده شده استفاده می شود. مجموعه داده های آزمایشی مورد استفاده در مقاله شامل 300 وب سایت است. از میان آنها 200 وب سایت فیشینگ هستند که 154 آن به عنوان فیشینگ توسط مدل طبقه بندی ذخیره شده پیش بینی شده است و 100 وب سایت قانونی هستند که 94 مورد از آن توسط مدل پیش بینی شده است. پس از پیش بینی ماتریس سردرگمی تولید می شود و میزان موفقیت آن 0.826 و نرخ خطا 0.173 است. بنابراین دقت مدل سازنده که با 750 نمونه آموزش دیده شده است دقت 82.6٪ را دارد. میزان صحت الگوریتم C4.5 از نرخ تقریبی 82 درصد تشخیص داده شده در مقاله پایه به نرخ تقریبی 96 درصد در این تحقیق رشد پیدا کرده است.

نه تنها الگوریتم های داده کاوی، بسیاری از پژوهش ها تلاش کرده اند تا الگوریتم های داده کاوی را اصلاح کنند تا قابلیت تشخیص فیشینگ این الگوریتم ها را بهبود بخشد. PRISM الگوریتم جفت گرا صفت-ارزش است. الگوریتم PRISM به طریقی اصلاح می شود که در یک زمان حداقلی تمام قوانین کامل سعی در تولید شود. نتایج به دست آمده برای الگوریتم پیشنهادی حاکی از آن است که الگوریتم های استخراج داده ها می توانند برای تشخیص فیشینگ مورد استفاده قرار گیرند به عنوان الگوریتم پیشنهادی، 87 درصد از سایت های فیشینگ به درستی شناخته شده است. ما در این تحقیق با نرخ صحت بیش از 90 درصد وب سایت های فیشینگ را به درستی تشخیص دادیم و با الگوریتم های مختلف بر روی دیتاست استاندارد مورد استفاده در چند مقاله مقایسه را انجام دادیم.

مزایا و معایب: الگوریتم بهبود یافته C4.5 در اکثر موارد میزان خطای کمتری نسبت به روش سنتی C4.5 دارد. الگوریتم بهبود یافته C4.5 در تعداد متغیرهای بالا و تعداد مشخصه های زیاد، بهینه عمل می کند. قوانین استخراج شده از خروجی الگوریتم بهبود یافته C4.5 بسیار دقیق تر است و میزان فضای حافظه ای که مصرف می شود، بسیار کمتر است. تعداد برگ های تولید شده توسط الگوریتم بهبود یافته C4.5 کمتر از روش سنتی C4.5 می‌باشد. الگوریتم بهبود یافته C4.5 در دیتاست هایی با داده های نویز بالا بهینه عمل نمی کند و میزان خطای اجرای الگوریتم بهبود یافته C4.5 افزایش پیدا می کند.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

عکس 5

عکس 6

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه دسته بندی پیکسل مبتنی بر قطعه بندی رنگی تصویر با Quaternion Exponent Moments با نرم افزار MATLAB

کد پروژه: 2983

عنوان پروژه: فروش پروژه دسته بندی پیکسل مبتنی بر قطعه بندی رنگی تصویر با Quaternion Exponent Moments با نرم افزار MATLAB

قالب بندی: m – داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 70.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه دسته بندی پیکسل مبتنی بر قطعه بندی رنگی تصویر با Quaternion Exponent Moments با نرم افزار MATLAB

قطعه بندی تصویر یک مساله مهم اما همچنان دشوار برای حل باقی مانده است زیرا این مساله وابسته به برنامه بوده که معمولا اطلاعات در دسترس مرتبط در خصوص ساختار تصویر وجود ندارد. در سال های اخیر، الگوریتم های قطعه بندی تصویر بسیاری توسعه یافته اند، اما این الگوریتم ها اغلب بسیار پیچیده هستند و اغلب نتایج نامطلوبی می دهند. در این پروژه، ما قطعه بندی تصویر رنگی مبتنی بر دسته بندی پیکسل با استفاده از لحظات نمایی چهارگانه  (quaternion exponent moments) ارائه می دهیم. در مرحله اول، ویژگی تصویر پیکسل-سطح مبتنی بر لحظات چهارگانه نمایی (QEMs) استخراج شده است که به طور موثر می تواند بافت پیکسل تصویر را با توجه به ارتباط بین کانال های رنگی مختلف ثبت کند. سپس، ویژگی تصویر پیکسل-سطح به عنوان ورودی دسته بندی ماشین بردار پشتیبانی دو قلو (TSVM) استفاده می شود، و مدل TSVM با انتخاب نمونه های آموزشی با آستانه آنتروپی Arimoto آموزش داده می شود. در نهایت، تصویر رنگی با مدل TSVM آموزش داده شده دسته بندی شده است. این طرح پیشنهادی دارای مزایای زیر است: (1) QEMs کارا برای توصیف بافت پیکسل تصویر رنگی معرفی شده است که همبستگی بین کانال های رنگی مختلف را در نظر می گیرد، (2) بهترین دسته بندی TSVM استفاده شده است که دارای زمان محاسباتی کمتر و دقت دسته بندی بالاتری است. نتایج تجربی نشان می دهد که روش پیشنهادی ما عملکرد قطعه بندی بسیار امید بخشی در مقایسه با پیشرفته ترین روش های قطعه بندی که اخیرا در ادبیات تحقیق ارائه شده دارد.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 3

عکس 4

 

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه تشخیص احساسات از متون فارسی با شبکه عصبی المن بازگشتی با نرم افزار MATLAB

کد پروژه: 2982

عنوان پروژه: فروش پروژه تشخیص کمربند رانندگان از تصاویر گرفته شده در اتوبان ها برپایه ریخت شناسی تصویر با نرم افزار MATLAB

قالب بندی: m – داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 125.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه تشخیص احساسات از متون فارسی با شبکه عصبی المن بازگشتی با نرم افزار MATLAB

بی شک مهمترین مولفه انسان، حالات و احساسات اوست که با برقراری ارتباط با محیط پیرامون در تعامل است. احساسات یک فرد را می توان از رفتارهای خروجی او مانند حالات چهره، حرکت اعضای بدن، لحن سخن گفتن و نوشتن متن، تشخیص داد. تشخیص احساسات از روی متون فارسی نوشته شده، یک روش علمی – روان شناسانه جهت ارزیابی و درک شخصیت افراد تلقی می گردد که کمک شایانی به شناخت روحیات افراد در زمان نوشتن می کند. روش ارائه شده در این تحقیق بر پایه روش شبکه عصبی المن به صورت بازگشتی (Recurrent Elman Neural Network) است که نمونه ها را آموزش می بیند. سپس از رگرسیون لاجیستیک به منظور تشخیص احساس متون فارسی و از معیارهای ارزیابی هم چون دقت، میانگین مربعات خطا به منظور ارزیابی و تضمین روش پیشنهادی، استفاده شده است. بهترین نرخ تشخیص احساسات، با استفاده از ترکیب همه ویژگی ها، قابل دست یابی است.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

عکس 5

عکس 6

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه تشخیص کمربند رانندگان از تصاویر گرفته شده در اتوبان ها برپایه ریخت شناسی تصویر با نرم افزار MATLAB

کد پروژه: 2981

عنوان پروژه: فروش پروژه تشخیص کمربند رانندگان از تصاویر گرفته شده در اتوبان ها برپایه ریخت شناسی تصویر با نرم افزار MATLAB

قالب بندی: m – داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 100.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه تشخیص کمربند رانندگان از تصاویر گرفته شده در اتوبان ها برپایه ریخت شناسی تصویر با نرم افزار MATLAB

امروزه با توجه به رشد حمل و نقل و خودروهای در تردد در جاده ای شهری و بین شهری، شناسایی عواملی که ممکن است بر جان رانندگان تاثیر بگذارید و به آن ها با جریمه گوشزد گردد، امری حیاتی و مهم به شمار می رود. زیرا کاهش تصادفات جاده ای نشان دهنده آگاه بودن رانندگان از قوانین موجود است. امروزه دوربین های نظارتی مختلفی در سطح شهر و اتوبان های بین شهری قرار گرفته است که رانندگان متخلف را با شناسایی پلاک هایشان جریمه می کند. اما یکی از بخش هایی که به شدت بر سلامت رانندگان و نفر سرنشین کنار راننده تاثیر دارد، بستن کمربند ایمنی است. از این رو، تحقیق پیش رو سعی در ارائه یک روش موثر در تشخیص کمربند رانندگان از تصاویر را دارد. روش پیشنهادی جهت برطرف سازی روش های پیشین شامل کاهش پیچیدگی محاسباتی، افزایش دقت و سرعت بیشتر، ارائه گردیده است. رویکرد این تحقیق مبتنی بر عملیات پردازش تصویر است، بدین صورت که شامل پنج مرحله اساسی می باشد، یعنی پیش پردازش، تشخیص ناحیه پلاک خودرو، تشخیص ناحیه پنجره جلویی، تشخیص فرد در خودرو و یافتن موقعیت کمربند در راننده. این عملیات مبتنی بر تقطیع بوده و از روش لبه یابی مبتنی بر عملگر کانی بهبود یافته مبتنی بر روش اتوماتای یادگیر سلولی با یک مرحله بزرگ نمایی بعد از قطعه بندی و در نهایت استفاده از پردازش ریخت شناسی مبتنی بر منطق فازی جهت تشخیص بسته بودن یا نبودن کمربند ایمنی، انجام می شود. افزایش دقت و حساسیت، از مهمترین معیارهای ارزیابی این تحقیق به شمار می رود.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

عکس 5

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه تشخیص و تصحیص قرمزی چشم در تصاویر مبتنی بر منطق فازی و اصول پردازش تصویر با نرم افزار MATLAB

کد پروژه: 2980

عنوان پروژه: فروش پروژه تشخیص و تصحیص قرمزی چشم در تصاویر مبتنی بر منطق فازی و اصول پردازش تصویر با نرم افزار MATLAB

قالب بندی: m – داکیومنت کامل

دسته: کامپیوتر – MATLAB

قیمت: 100.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه تشخیص و تصحیص قرمزی چشم در تصاویر مبتنی بر منطق فازی و اصول پردازش تصویر با نرم افزار MATLAB

وجود نواحی قرمز رنگ در ناحیه شبکه در زمان عکس برداری، یکی از مشکلات و چالش های قابل توجه می باشد. با توجه به این که دلیل این قرمزی چشم، تشدید نور و ناگهانی بودن برخرود آن با چشم است و انعکاس قرمزی رگ‌ های خونی در ناحیه شبکیه چشم را منجر می شود، نیاز است تا در تصاویر، تا جای ممکن کاسته و یا حذف شود. تشخیص و حذف قرمزی چشم یکی از مسائل جالب توجه سالیان اخیر در حوزه پردازش تصویر بوده است. تا جایی که روش های متنوعی برای آن ارائه و تدوین شده اند، اما هم چنان نقاط ضعف مختلفی در آن باقی مانده است. شناسایی الگوهای چشم شامل بافت، رنگ و شدت نور، می تواند ویژگی های اصلی سیستم های تشخیص و حذف قرمزی تلقی شود. در این تحقیق از عملگرهای ریخت شناسانه برای تقطیع تصاویر و مشخص کردن ویژگی ها مبتنی بر منطق فازی استفاده شده است و در مرحله بعدی، از رشد ناحیه ای برای تصحیح کردن نواحی قرمز استفاده گردیده است. در این سیستم، ابتدا شناسایی وجود چهره در تصویر نیز شکل گرفته است که در فاز تقطیع، ویژگی های چهره مدنظر قرار گرفته است. دقت رویکرد پیشنهادی برای تصحیح و حذف قرمزی چشم 98.52 % بوده است که عملکردی بهتری نسبت به روش های مشابه پیشین را نشان می دهد.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

عکس 5

عکس 6

عکس 7

عکس 8

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه کنترل اتوماتیک تولید در محیط تنظیم نشده با باتری های جریان ردوکس و کنترل کننده جریان برق بین خط با نرم افزار MATLAB

کد پروژه: 2979

عنوان پروژه: فروش پروژه کنترل اتوماتیک تولید در محیط تنظیم نشده با باتری های جریان ردوکس و کنترل کننده جریان برق بین خط با نرم افزار MATLAB

قالب بندی: m – mdl

دسته: الکترونیک – MATLAB

قیمت: 25.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه کنترل اتوماتیک تولید در محیط تنظیم نشده با باتری های جریان ردوکس و کنترل کننده جریان برق بین خط با نرم افزار MATLAB

در این تحقیق، سیمولینک و کد کنترل اتوماتیک تولید (Automatic Generation Control) یا AGC در یک محیط تنظیم نشده دارای یک سری باتری های جریان ردوکس (redox) به کمک کنترل کننده جریان برق بین خط یا IPFC در محیط MATLAB انجام گرفته است.

عكس خروجی برنامه

عکس 1

عکس 2

عکس 3

عکس 4

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.

فروش پروژه حذف نویز از تصاویر سی تی اسکن با استفاده از تبدیل موجک بهینه با نرم افزار MATLAB

کد پروژه: 2978

عنوان پروژه: فروش پروژه حذف نویز از تصاویر سی تی اسکن با استفاده از تبدیل موجک بهینه با نرم افزار MATLAB

قالب بندی: m

دسته: کامپیوتر – MATLAB

قیمت: 150.000 تومان

قابلیت اجرا در نرم افزار: MATLAB

شرح مختصر:

فروش پروژه حذف نویز از تصاویر سی تی اسکن با استفاده از تبدیل موجک بهینه با نرم افزار MATLAB

حذف نویز از تصاویر مختلف می تواند ابعاد جدیدی از تصویر را نمایان سازد. در حوزه پزشکی نیز این قضیه می تواند تحلیل یک دکتر از تصویر گرفته شده را بهبود بدهد تا اشتباهات پزشکی را کاهش دهد. حذف نویز در تصاویر سی تی اسکن، از جمله رویکردهایی است که در سالیان اخیر، محققان فراوانی را به سمت خود جلب کرده است. به دلیل وجود نویز بعد از نویز زدایی، هم چنان کاهش و حذف نویز در تصاویر سی تی اسکن در مجامع علمی به عنوان یک موضوع داغ و حیاتی، مورد بررسی و تحقیق است. این پژوهش نیز سعی بر ارائه یک روش نوین و جدید با هدف حذف نویز از تصاویر سی تی اسکن با بالاترین دقت و نرخ حساسیت با در نظر گرفتن معیارهایی چون اوج نسبت سیگنال به نویز و نسبت سیگنال به نویز و معیارهای دیگر، بنیان شده است. روش ارائه شده مبتنی بر ترکیب تبدیل موجک و منطق فازی است تا با قوانین فازی بتوان در حذف نویزها، گامی جدید را برداشت و چالش های موجود در این حوزه را مرتفع ساخت.

عكس خروجی برنامه

عكس 1

عكس 2

عکس 3

عكس 4

عکس 5

عکس 6

 

برای خرید این پروژه با شماره 09360703858

یا آدرس ایمیل nn4e@aol.com در تماس باشید.